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Abstract. A new method to obtain trigonometry for the real spaces of constant curvature and
metric of any (even degenerate) signature is presented. The method could be described as
‘curvature/signature (in)dependent trigonometry’ and encapsulates trigonometry for all these spaces
into a single basic trigonometric group equation. This brings to its logical end the idea of an
‘absolute trigonometry’, and provides equations which hold true for the nine two-dimensional
spaces of constant curvature and any signature. This family of spaces includes both relativistic and
non-relativistic spacetimes; therefore a complete discussion of trigonometry in the six de Sitter,
Minkowskian, Newton–Hooke and Galilean spacetimes follow as particular instances of the general
approach. Distinctive traits of the method are ‘universality’ and ‘self-duality’: every equation
is meaningful for the nine spaces at once, and displays invariance explicitly under a duality
transformation relating the nine spaces amongst themselves. These basic structural properties
allow a complete study of trigonometry and, in fact, any equation previously known for the three
classical (Riemannian) spaces also has a version for the remaining six ‘spacetimes’; in most cases
these equations are new.

1. Introduction

The trigonometry of relativistic homogeneous, constant-curvature models of spacetimes (anti-
de Sitter, Minkowski and de Sitter) is the most elementary part of the geometry in these
spacetimes. However, it has yet to become part of common knowledge in mathematics or
theoretical physics. Trigonometry in Minkowskian spacetime was first studied explicitly by
Birman and Nomizu [1] and except for some results in Yaglom’s book [2], in which they
are termed cohyperbolic and doubly hyperbolic geometries, we have not found any explicit
formulation for the trigonometry in either anti-de Sitter or de Sitter spacetimes, in spite of the
very basic nature and strong current interest in these spaces. Thus a first and short-term aim
of this paper is to fill this gap.

There is also a second, more long-term aim. Trigonometry, the study of the simplest
geometrical configuration in a given space, should be a basic building block within the specific
study of the geometry of homogeneous symmetric spaces. Hence this paper should also (and
in the long term, mainly) be read as a step within the general programme of studying the
trigonometry of symmetric spaces (see [3–6]).

Within this perspective, the final and primary aim of this work is to introduce the ideas
and methods of a group-theoretical derivation to trigonometry which we believe to be new.
This approach does not consider trigonometry for a single space (for, say, the anti-de Sitter
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spacetime), but instead is addressed towards providing simultaneously the trigonometry of a
whole family of spaces. This approach carries to its logical end the ‘absolute trigonometry’,
first discussed by Bolyai and then continued by de Tilly amongst others [7, 8], which covered
simultaneously the three classical spaces of constant curvature (sphere, Euclidean space and
Lobachewski hyperbolic space).

There are several distinctive traits in this approach. First, economy of thought: a single
(parameter-dependent) computation covers at once the trigonometry of several spaces. Second,
a clear view is obtained of relationships between different spaces in the same family, such as
several dualities; otherwise some of these may easily pass unnoticed, yet they may provide
new insights. Third, limiting (contracted) cases, corresponding to vanishing curvature and/or
a degenerate metric, are included and described at the same level as the generic ones, thus
making completely redundant a separate study of contractions. These traits apply not only
to trigonometry, but also to the study of most properties of geometries, groups and algebras
within each family [9–18].

All symmetric homogeneous spaces can be classed into several natural families [13, 19,
20], each with their Lie groups of motion, Lie algebras, etc, which depend on some parameters
distinguishing family members. In the (irreducible) spaces of real type, these parameters
determine the curvatures and/or the signatures of the fundamental metric for each space in
the family. Additional parameters in other families label a division algebra (C,H,O) or
a pseudo-division variant coordinatizing the space. The method we are proposing should
furnish trigonometry for all these families of spaces.

In this paper we restrict ourselves to a complete and detailed discussion of the trigonometry
of the rank-one symmetric homogeneous spaces of real type, called quadratic or orthogonal
Cayley–Klein spaces (see, e.g., [12, 15, 21, 22]), that are associated with the quasi-orthogonal
Lie groups SO(N) and SO(p, q) and some of their contractions; this will also serve
as a background to underlie a forthcoming follow-up paper [23] which is devoted to the
trigonometry of rank-one complex Hermitian spaces associated with the unitary groups.

Any three points in any rank-one real-type homogeneous symmetric space are always
contained in a two-dimensional (2D) totally geodesic submanifold, so considering only 2D
spaces (planes) is no restriction at all. There are nine 2D real quadratic Cayley–Klein spaces [2]:
the sphere, Euclidean and hyperbolic planes, the co-Euclidean, Galilean and co-Minkowskian
planes and finally the co-hyperbolic, Minkowskian and doubly hyperbolic planes. Only the first
three spaces mentioned belong to the restricted family of the so-called two-point homogeneous
spaces whose trigonometry is very well known. The remaining six spaces are not two-point
homogeneous [24], but together with the three previous ones they provide a natural frame for a
joint study of trigonometry. Within a concrete physical interpretation these six spaces are the
(1 + 1)D symmetric homogeneous spacetimes: oscillating (or anti)Newton–Hooke, Galilean,
expanding Newton–Hooke (1 + 1)D spacetimes, and anti-de Sitter, Minkowskian and de Sitter
(1 + 1)D spacetimes. The trigonometry of the two constant-curvature counterparts of the
special relativity spacetime, mentioned as a short-term first aim of this work, follows as a side
effect. The required information on these nine 2D spaces is given in section 2.

The method we propose is presented in section 3. It embodies the trigonometry for the
whole biparametric family of these real 2D Cayley–Klein spaces into a single group equation,
which we call the basic trigonometric identity. Starting from this, our procedure allows a
very rapid browsing through the complete zoo of trigonometric equations for the nine spaces
which are obtained in section 4. These equations are very well known in the three constant-
curvature Riemannian cases but we have not found any reference to the anti-de Sitter and
de Sitter versions of most of these formulae, especially those involving areas and co-areas of
triangular loops. In section 5 we translate some of the results to the kinematic language, and
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offer several trigonometric relations for the de Sitter and anti-de Sitter spacetimes, as well as
for their non-relativistic analogues. A section with some final comments and prospects for
continuation of this work closes the paper.

2. The nine two-dimensional real Cayley–Klein geometries

The motion groups of the nine 2D Cayley–Klein ( CK) geometries of real type can be described
in a unified setting by means of two real coefficients κ1, κ2 and are collectively denoted as
SOκ1,κ2(3). The generators {P1, P2, J12} of the corresponding Lie algebras soκ1,κ2(3) have Lie
commutators

[J12, P1] = P2 [J12, P2] = −κ2P1 [P1, P2] = κ1J12. (2.1)

There is a single Lie algebra Casimir coming from the Killing–Cartan form:

C = P 2
2 + κ2P

2
1 + κ1J

2
12. (2.2)

The CK algebras soκ1,κ2(3) can be endowed with a Z2 ⊗ Z2 group of commuting
automorphisms generated by

�(1) : (P1, P2, J12) → (−P1,−P2, J12)

�(2) : (P1, P2, J12) → (P1,−P2,−J12).
(2.3)

The two remaining involutions are the composition�(02) = �(1) ·�(2) and the identity. Each
involution � determines a subalgebra of soκ1,κ2(3) the elements of which are invariant under
�; the subgroups generated by these subalgebras will be denoted by H .

The elements defining a 2D CK geometry are as follows [9, 10].

• The plane as the set of points corresponds to the 2D symmetrical homogeneous space

S2
[κ1],κ2

≡ SOκ1,κ2(3)/H(1) ≡ SOκ1,κ2(3)/SOκ2(2) H(1) = 〈J12〉 ≈ SOκ2(2). (2.4)

The generator J12 leaves a point O (the origin) invariant, thus J12 acts as the rotation
aroundO. The involution�(1) is the reflection around the origin. In this space P1 and P2

generate translations which move the origin point in two basic directions.
• The set of lines is identified as the 2D symmetrical homogeneous space

S2
κ1,[κ2] ≡ SOκ1,κ2(3)/H(2) ≡ SOκ1,κ2(3)/SOκ1(2) H(2) = 〈P1〉 ≈ SOκ1(2). (2.5)

In this space, the generator P1 leaves invariant the ‘origin’ line l1, which is moved in two
basic directions by J12 and P2. Therefore, within S2

κ1,[κ2], P1 should be interpreted as the
generator of ‘rotations’ around l1, and the involution �(2) is the reflection in l1.

• There is a second set of lines corresponding to the 2D symmetrical homogeneous space

SOκ1,κ2(3)/H(02) ≡ SOκ1,κ2(3)/SOκ1κ2(2) H(02) = 〈P2〉 ≈ SOκ1κ2(2). (2.6)

In this case, P2 leaves invariant an ‘origin’ line l2 in this space, while J12 and P1 do move
l2. The involution �(02) is the reflection in the line l2.

In order to distinguish the two sets of lines we will call the elements of S2
κ1,[κ2] lines of the

first kind, while the elements of the space SOκ1,κ2(3)/H(02) will be called lines of the second
kind. By a two-dimensional CK geometry we will understand the set of three symmetrical
homogeneous spaces of points, lines of the first kind and lines of the second kind. The group
SOκ1,κ2(3) acts transitively on each of these spaces.
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All properties of the two spaces of lines can be transcribed in terms of the space S2
[κ1],κ2

itself, and in this interpretation the lines of the first or second kind can be seen as certain 1D
submanifolds of S2

[κ1],κ2
rather than ‘points’ in the spaces S2

κ1,[κ2] or SOκ1,κ2(3)/H(02). In the
following we will interpret everything in terms of the space S2

[κ1],κ2
, where l1 and l2 should be

considered as two ‘orthogonal’ lines meeting in O.
The coefficients κ1, κ2 play a twofold role. The space S2

[κ1],κ2
has a quadratic metric

coming from the Casimir (2.2), the signature of which corresponds to the matrix diag(1, κ2).
This metric is Riemannian (definite positive) for κ2 > 0, Lorentzian (indefinite) for κ2 < 0 and
degenerate for κ2 = 0. This space has a canonical connection which is compatible with the
metric, and has constant curvature equal to κ1. In the notation S2

[κ1],κ2
, S2

κ1,[κ2] for the spaces,
the κi in square brackets is the constant curvature, and the remaining constant determines the
signature. Alternatively, the coefficients κ1, κ2 determine the kind of measures of separation
amongst points and lines in the Klein sense [2, 9].

• The pencil of points on a first-kind line is elliptical/parabolic/hyperbolic according to
whether κ1 is greater than/equal to/less than zero.

• Likewise for the pencil of points on a second-kind line depending on the product κ1κ2.
• Likewise for the pencil of lines through a point according to κ2.

For κ1 positive/zero/negative the isotropy subgroup H(2) is SO(2)/R/SO(1, 1), and
the same happens for H(1) (respectively, H(02)) according to the value of κ2 (respectively,
κ1κ2 ≡ κ02). Whenever the coefficient κ1 (respectively, κ2) is different from zero, a suitable
choice of length unit (respectively, angle unit) allows us to reduce it to either +1 or −1. Hence
we obtain nine 2D real CK geometries which are displayed in table 1.

A fundamental property of the scheme of CK geometries is the existence of an
‘automorphism’ of the whole family, called ordinary duality D, which is given by

D : (P1, P2, J12) → (−J12,−P2,−P1) D : (κ1, κ2) → (κ2, κ1). (2.7)

The map D leaves the general commutation rules (2.1) invariant, while it interchanges the
space of points with the space of first-kind lines, S2

[κ1],κ2
↔ S2

κ1,[κ2], and the corresponding
curvatures κ1 ↔ κ2, preserving the space of second-kind lines. Duality interchanges the
Euclidean, hyperbolic and Minkowskian geometries with the co-Euclidean, co-hyperbolic and
co-Minkowskian ones, while elliptic, Galilean and doubly hyperbolic are self-dual geometries.
This also suggests a kind of duality between curvature and signature which would be worth
studying.

The non-generic situation where a coefficient κi vanishes corresponds to an Inönü–Wigner
contraction [25]. The limit κ1 → 0 is a local contraction (around a point), while the limit
κ2 → 0 is an axial contraction (around a line) (see table 1). We remark that our approach to
contractions is built-in to any expression associated with the CK geometries so that a contraction
is simply equivalent to setting κi = 0 in the desired relation.

2.1. Spacetimes as Cayley–Klein spaces

Let H, P and K be the generators of time translations, space translations and boosts,
respectively, in the most simple (1 + 1)D homogeneous spacetime. Under the identification

P1 ≡ H P2 ≡ P J12 ≡ K (2.8)

the six CK groups with κ2 � 0 (the second and third rows of table 1; NH denotes Newton–
Hooke) are the motion groups of (1 + 1)D spacetimes [26]. The physical reading of the three
CK spaces within each of these six CK geometries is as follows:
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Table 1. The nine two-dimensional CK geometries.

Measure of distance

Measure Elliptic Parabolic Hyperbolic
of angle κ1 = 1 κ1 = 0 κ1 = −1

Elliptic Elliptic Euclidean Hyperbolic
κ2 = 1 SO(3) ISO(2) SO(2, 1)

[J12, P1] = P2 [J12, P1] = P2 [J12, P1] = P2

[J12, P2] = −P1 [J12, P2] = −P1 [J12, P2] = −P1

[P1, P2] = J12 [P1, P2] = 0 [P1, P2] = −J12

C = P 2
2 + P 2

1 + J 2
12 C = P 2

2 + P 2
1 C = P 2

2 + P 2
1 − J 2

12
H(1) = SO(2) H(1) = SO(2) H(1) = SO(2)
H(2) = SO(2) H(2) = R H(2) = SO(1, 1)
H(02) = SO(2) H(02) = R H(02) = SO(1, 1)

Parabolic Co-Euclidean Co-Minkowskian
κ2 = 0 oscillating NH Galilean expanding NH

ISO(2) IISO(1) ISO(1, 1)

[J12, P1] = P2 [J12, P1] = P2 [J12, P1] = P2

[J12, P2] = 0 [J12, P2] = 0 [J12, P2] = 0
[P1, P2] = J12 [P1, P2] = 0 [P1, P2] = −J12

C = P 2
2 + J 2

12 C = P 2
2 C = P 2

2 − J 2
12

H(1) = R H(1) = R H(1) = R

H(2) = SO(2) H(2) = R H(2) = SO(1, 1)
H(02) = R H(02) = R H(02) = R

Hyperbolic Co-hyperbolic Doubly hyperbolic
κ2 = −1 anti-de Sitter Minkowskian de Sitter

SO(2, 1) ISO(1, 1) SO(2, 1)

[J12, P1] = P2 [J12, P1] = P2 [J12, P1] = P2

[J12, P2] = P1 [J12, P2] = P1 [J12, P2] = P1

[P1, P2] = J12 [P1, P2] = 0 [P1, P2] = −J12

C = P 2
2 − P 2

1 + J 2
12 C = P 2

2 − P 2
1 C = P 2

2 − P 2
1 − J 2

12
H(1) = SO(1, 1) H(1) = SO(1, 1) H(1) = SO(1, 1)
H(2) = SO(2) H(2) = R H(2) = SO(1, 1)
H(02) = SO(1, 1) H(02) = R H(02) = SO(2)

• S2
[κ1],κ2

is a (1 + 1)D spacetime, and points in S2
[κ1],κ2

are spacetime events; the spacetime
curvature equals κ1 and is related to the usual universe (time) radius τ by κ1 = ±1/τ 2.

• The space of first-kind lines S2
κ1,[κ2] corresponds to the space of timelike lines. The

coefficient κ2 is the curvature of the space of timelike lines, linked to the relativistic
constant c as κ2 = −1/c2. Relativistic spacetimes occur for κ2 < 0 (the signature of the
metric is diag(1,−1/c2)) and their non-relativistic limits correspond to κ2 = 0.

• The space of second-kind lines SOκ1,κ2(3)/H(02) is the 2D space of spacelike lines.

We have three homogeneous ‘absolute-time’ spacetimes for κ2 = 0: oscillating NH for
κ1 > 0, Galilean for κ1 = 0 and expanding NH for κ1 < 0; they are degenerate Riemannian
spacetimes with constant curvature κ1 and a degenerate (‘absolute-time’) metric, which is the
c = ∞ limit of the time metric in relativity. For κ2 = −1/c2 < 0 we find three ‘relative-time’
spacetimes: anti-de Sitter (κ1 > 0), Minkowskian (κ1 = 0) and de Sitter (κ1 < 0); these are
pseudo-Riemannian spacetimes with a metric of Lorentzian type and constant curvature κ1.
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The limits κ1 → 0 ≡ τ → ∞ and κ2 → 0 ≡ c → ∞ correspond to a spacetime contraction
and a speed–space contraction, respectively.

The three remaining geometries with κ2 > 0 do not admit such a kinematic interpretation.
They are the well known Riemannian spaces with constant curvature κ1. In these cases, the sets
of first- and second-kind lines coincide, because in these cases (and only these) the generators
P1 and P2 are conjugated. This is why only these three spaces fulfil the usual definition of
two-point homogeneity; as we show in this paper there is no compelling reason to restrict any
joint study only to these three cases.

2.2. Matrix realization of the Cayley–Klein groups and the vector model of Cayley–Klein
spaces

The following 3D real matrix representation of the CK algebra soκ1,κ2(3)

P1 =




0 −κ1 0

1 0 0

0 0 0


 P2 =




0 0 −κ1κ2

0 0 0

1 0 0


 J12 =




0 0 0

0 0 −κ2

0 1 0




(2.9)

gives rise to a natural realization of the CK groupSOκ1,κ2(3) as a group of linear transformations
in an ambient linear space R

3 = (x0, x1, x2) in which SOκ1,κ2(3) acts as the group of linear
isometries of a bilinear form with matrix: � = diag(1, κ1, κ1κ2). The exponential of the
matrices (2.9) leads to a representation of the one-parameter subgroups H(2), H(02) and H(1)
generated by P1, P2 and J12 as

exp(αP1) =



Cκ1(α) −κ1Sκ1(α) 0

Sκ1(α) Cκ1(α) 0

0 0 1




exp(βP2) =



Cκ1κ2(β) 0 −κ1κ2Sκ1κ2(β)

0 1 0

Sκ1κ2(β) 0 Cκ1κ2(β)


 (2.10)

exp(γ J12) =




1 0 0

0 Cκ2(γ ) −κ2Sκ2(γ )

0 Sκ2(γ ) Cκ2(γ )




where the generalized cosine Cκ(x) and sine Sκ(x) functions are defined by [9–11]

Cκ(x) :=
∞∑
l=0

(−κ)l x
2l

(2l)!
=




cos
√
κ x κ > 0

1 κ = 0

cosh
√−κ x κ < 0

(2.11)

Sκ(x) :=
∞∑
l=0

(−κ)l x2l+1

(2l + 1)!
=




1√
κ

sin
√
κ x κ > 0

x κ = 0

1√−κ sinh
√−κ x κ < 0.

(2.12)
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Two other useful functions are the ‘versed sine’ Vκ(x) and the tangent Tκ(x):

Vκ(x) := 1

κ
(1 − Cκ(x)) Tκ(x) := Sκ(x)

Cκ(x)
. (2.13)

These curvature-dependent trigonometric functions coincide with the usual circular and
hyperbolic ones for κ = 1 and −1, respectively; the case κ = 0 provides the parabolic or
Galilean functions: C0(x) = 1, S0(x) = x and V0(x) = x2/2. Several identities for these
functions, which are necessary for further development, are included in the appendix.

The action of SOκ1,κ2(3) on R
3 is linear but not transitive, since it conserves the quadratic

form (x0)2 + κ1(x
1)2 + κ1κ2(x

2)2, and the subgroup H(1) is the isotropy subgroup of the point
O ≡ (1, 0, 0), that is, the origin in the space S2

[κ1],κ2
. The action becomes transitive on the

orbit in R
3 of the point O, which is contained in the ‘sphere’  :

 ≡ (x0)2 + κ1(x
1)2 + κ1κ2(x

2)2 = 1. (2.14)

This orbit can be identified with the space of points S2
[κ1],κ2

≡ SOκ1,κ2(3)/SOκ2(2) of
the CK geometry and the coordinates (x0, x1, x2) are the Weierstrass coordinates, while
(x1/x0, x2/x0) are the Beltrami coordinates. The induced metric on the CK sphere  
should be defined as the quotient by κ1 of the restriction of the flat ambient metric dl2 =
(dx0)2 + κ1(dx1)2 + κ1κ2(dx2)2; this is always well defined because the restriction of the flat
metric dl2 to the CK sphere contains κ1 as a factor [16].

3. The compatibility conditions for a triangular loop

We now come to the main objective of this paper, which is the study of the trigonometry of the
nine CK spaces introduced in the previous section.

In the Euclidean plane three points always determine a triangle unambiguously: any two
points are connected by a single geodesic segment, and all triangles are of the same type. In
the sphere three points do not determine a single triangle, because two generic points can be
joined by two segments on the same geodesic, yet all triangles are of the same type. In the
Minkowskian plane two points can always be joined by a single geodesic segment (as in the
Euclidean plane), but this segment can be of timelike, spacelike and isotropic type, so here
three points do determine a single triangle, but not all triangles are of the same type. Finally, in
the anti-de Sitter spacetime both complications may appear together: there are three types of
sides, and two points with timelike separation can be joined, as in the sphere, by two different
timelike geodesic segments.

To avoid unnecessary complications, it is better to introduce the concept of the triangular
loop, which affords a well defined replacement of the imprecise idea of a ‘triangle as three
points’. A triangular loop can be considered either as a triangular point loop or as a triangular
line loop, and we will need simultaneous consideration of both aspects. Furthermore, and
according to the type of the ‘sides’, there are several different types of triangular loops, which
merge into a single type in the Riemannian case κ2 > 0. Henceforth, we will deal exclusively
with first-kind triangular loops (i.e. timelike in the kinematic spaces) so that hereafter we can
omit the reference to the first-kind type of all lines.

A triangular point loop can be considered as two different paths for a point going from
an initial position C to a final one B. One path will be the direct one along the segment of line
a determined by C and B. The other will be a two-step path constructed from two segments
of lines going from C to an intermediary point A along a line b and then from A to B along
line c (see figure 1(a)). For most purposes it is better to look at the triangular point loop as
a single (possibly open) polygonal curve, obtained from line a by replacing the segment CB
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Figure 1. (a) Triangular point loop. (b) Triangular line loop.

by the two geodesic segments CA and AB; this curve will be considered as an oriented and
cooriented curve, and will be only closed when the geodesic a itself is closed. This view can
be dualized, and the loop can also be considered as a triangular line loop: the dual of the single
curve associated with the point loop is a moving line which starts at a, then rotates around C
going to b, then aroundA towards c and finally comes back to a by means of a rotation around
B (see figure 1(b)).

Each side of the loop determines the generator of translations along the side, up to a non-
zero scale factor which should be split into a sign (corresponding to one of the two possible
orientations of the line) and a positive scale factor (corresponding to the choice of a unit length).
The restriction to first-kind sides means that:

P1 The three generatorsPa, Pb, Pc are either equal or opposite to some conjugate to the single
fiducial generator of translations P1 along first-kind lines.

We shall now perform a fiducial choice of the still undetermined factors in these generators,
which we will henceforth assume to be fixed, according to a second condition.

P2 The positive sense of translation generated by Pa, Pb, Pc agrees with the orientation for
the point loop as a single curve.

The meaning of these conditions can be appreciated more clearly for the kinematic
geometries with κ2 � 0, for which the first condition embodies the timelike character of
the three lines (here P1 ≡ H generates the future time translation along the fiducial timelike
line), and the second condition corresponds to the future character of a timelike line loop. In
the Riemannian cases (κ2 > 0) all geodesics can be considered to be simultaneously of both
first and second kind; then the first condition is automatic, while the second one can always
be clearly fulfilled. The important fact is that for any triangular loop, a choice of Pa, Pb, Pc
satisfying these two conditions is always possible, and this is so simultaneously for the nine
CK geometries.

On the dual hand, the generators JA, JB, JC of rotations around the vertices A ≡ b ∩ c,
B ≡ c ∩ a, C ≡ a ∩ b are again determined up to sign and a positive scale factor, which we
shall choose so as to satisfy two conditions, dual to the previous ones.

J1 The three generators JA, JB, JC are conjugated by means of some group transformation
to the single fiducial generator of rotations J12.

J2 The positive sense of rotation around each vertex is the correct one determined by the
given orientation and co-orientation of the loop as a curve.

Now, for a given triangular loop, we denote by a, b, c the three side lengths (which are
positive and unoriented distances), B,C the two inner angles and A an external angle (see
figure 2). In the kinematic cases, the lengths a, b, c will be the proper times along the sides
between their end events, and the anglesA,B,C are the relative rapidities between the timelike
lines at each vertex; the triangle loop, seen as a single curve, is the worldline of the travelling
twin in the twin pseudo-paradox.
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Figure 2. Triangle with three first-kind sides a, b,
c, two inner angles B, C and an external angle A.

The generators Pa, Pb, Pc; JA, JB, JC are not independent. They are related by several
compatibility conditions:

Pb = eCJCPae−CJC JB = ecPcJAe−cPc

Pc = e−AJAPbeAJA JC = e−aPaJBeaPa

Pa = eBJBPce−BJB JA = ebPbJCe−bPb
(3.1)

which can be considered as giving an implicit group-theoretical definition for the three sides
and the three angles. Our main contention is that all the trigonometry of the space is completely
contained in these equations, which have as a remarkable property their explicit duality (due
to D (2.7)) under the interchange a, b, c ↔ A,B,C and P ↔ J .

The first equation in (3.1) gives the translation generator Pb as a conjugate of Pa by means
of a rotation around C; the same equation read inversely gives Pa as a conjugate of Pb by
means of the inverse rotation around C. We will refer to them as Pb(Pa) or Pa(Pb); likewise
the remaining equations will be referred to as Pc(Pb), Pa(Pc), JB(JA), etc.

By cyclic substitution in the three equations Pa(Pc), Pc(Pb) and Pb(Pa) we find

eBJB e−AJAeCJCPae
−CJCeAJAe−BJB = Pa. (3.2)

Likewise, a dual parallel process allows us to derive an identity involving JC :

e−aPaecPcebPbJCe−bPbe−cPceaPa = JC. (3.3)

Equations (3.2) and (3.3) can be written alternatively as

eBJB e−AJAeCJC must commute with Pa

e−aPaecPcebPb must commute with JC.
(3.4)

3.1. Loop excesses and loop equations

The content of (3.4) means that the product e−aPaecPcebPb of the three translations along the

three sides of the triangle C
b→A

c→B
−a→C moves the base point C along the triangle and

returns it back to its original position, so it must necessarily be a rotation around the vertex C
by some angle −%C and must commute with JC :

e−aPaecPcebPb = e−%CJC . (3.5)

Likewise, the product eBJB e−AJAeCJC of the three rotations around the three vertices,

a
C→ b

−A→ c
B→ a must be a translation along the side a by an amount −δa:

eBJB e−AJAeCJC = e−δaPa . (3.6)
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The two quantities δa and %C are so far unknown. To find them we start with the equation
Pc(Pb) in (3.1), replace Pc by e−cPcPcecPc and then substitute Pc(Pa) to obtain

e−AJAPbeAJA = e−cPce−BJBPaeBJB ecPc . (3.7)

We introduce JB(JC) and simplify trivially to find

e−AJAPbeAJA = e−cPceaPae−BJCPaeBJCe−aPaecPc (3.8)

which is equivalent to

eBJCe−aPaecPce−AJAPbeAJAe−cPceaPae−BJC = Pa. (3.9)

Now we use JA(JC), simplify and finally substitute Pb(Pa). This gives

eBJCe−aPaecPcebPbe−AJCeCJCPae
−CJCeAJCe−bPbe−cPceaPae−BJC = Pa. (3.10)

Due to (3.4) we can write

e−aPaecPcebPbe(−A+B+C)JCPae
−(−A+B+C)JCe−bPbe−cPceaPa = Pa (3.11)

e−aPaecPcebPbe(−A+B+C)JC must commute with Pa. (3.12)

And by taking into account (3.4) and (3.12), we immediately conclude that

e−aPaecPcebPbe(−A+B+C)JC = 1 (3.13)

since the identity is the only element of SOκ1,κ2(3) that commutes with two such generators as
Pa and JC . This equation can also be written as

e−aPaecPcebPb = e−(−A+B+C)JC (3.14)

and so it gives the unknown angle %C = −A + B + C appearing in (3.5). A very similar
procedure allows us to derive two analogous equations for the quantities %A, %B :

ebPbe−aPaecPc = e−(−A+B+C)JA

ecPcebPbe−aPa = e−(−A+B+C)JB
(3.15)

hence we obtain

%A = %B = %C = −A + B + C ≡ %. (3.16)

The quantity % will be called the angular excess of the triangle loop, and fits into the view
of the point loop as a single curve which starts on the geodesic a, and successively rotates by
angles C, −A and B around the three vertices of the triangle, so that −A + B + C should be
seen as the (oriented) total angle turned by the line loop. Equations (3.14) and (3.15), to be
called the point loop equations, simply state that the product of the three translations along the
oriented sides of the triangle loop equals a rotation around the base point of the loop, with an
angle equal to minus the angular excess of the triangle loop.

Duality implies that the dual partners of equations (3.14) and (3.15) given by

e−AJAeCJCeBJB = e−(−a+b+c)Pc

eBJB e−AJAeCJC = e−(−a+b+c)Pa

eCJCeBJB e−AJA = e−(−a+b+c)Pb

(3.17)

also hold, so that

δa = δb = δc = −a + b + c ≡ δ (3.18)
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which will be called the lateral excess of the triangle. This appears as the (oriented) total length
of the point loop, where b and c are traversed in the same sense as the orientations chosen for
Pb, Pc, but a is traversed backwards relative to Pa . Therefore, equation (3.17), to be called
line loop equations, gives the product of the three oriented rotations around the three vertices
of a triangle as a translation along the base line of the loop, by an amount equal to minus the
lateral excess of the triangle loop.

Consequently, the canonical parameters of the ‘holonomy’ rotation, or of the dual
‘holonomy’ translation are independent of the base point or line, and are therefore associated
with the triangle loop in an intrinsic way. As we will see shortly, the excesses % and δ are
directly related to other natural quantities, the area and co-area of the triangular loop.

3.2. The basic trigonometric identity

Potentially, each of equations (3.14), (3.15) and (3.17) contains all the trigonometry of any CK
space. However, sides and angles appear in these equations not only explicitly as canonical
parameters, but also implicitly hidden inside the translation and rotation generators. This
prompts the search for another relation, equivalent to the previous ones but more suitable
for displaying the trigonometric equations; this new equation is indeed the bridge between
the former equations and the trigonometry of the space. The main idea is to express all the
generators as suitable conjugates of one translation generator and one rotation generator, which
we will take as primitive independent generators.

A natural choice is to take Pa and JC as ‘basic’ independent generators. Next, by using
the compatibility conditions (3.1) we define the remaining triangle generators Pb, JA, Pc, JB
in terms of the previous ones. After full expansion and simplification we obtain that

Pb := eCJCPae
−CJC

JA := eCJCebPaJCe−bPae−CJC

Pc := eCJCebPae−AJCPaeAJCe−bPae−CJC

JB := eCJCebPae−AJCecPaJCe−cPaeAJCe−bPae−CJC .

(3.19)

By direct substitution in equation (3.14) and after obvious cancellations we find

e−aPaeCJCebPae−AJCecPaeBJC = 1. (3.20)

The same process starting from any of equations (3.15) or (3.17) leads again to (3.20) with
the terms cyclically permuted. This justifies calling equation (3.20) the basic trigonometric
equation; it is clearly a self-dual equation.

The results obtained so far can be summed up as follows.

Theorem 1. Sides a, b, c and angles A,B,C of any triangle loop are linked by the single
self-dual group identity called the basic trigonometric identity

e−aP eCJ ebP e−AJ ecP eBJ = 1 (3.21)

where P, J are the generators of translations along any fixed fiducial line l, and of rotations
around any fixed fiducial point O on the line l.

Theorem 2. Let Pa, Pb, Pc be the generators of translations along the three sides of a
triangle (whose lengths are a, b, c), and JA, JB, JC the generators of rotations around the
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three vertices (with angles A,B,C). Then we have two sets of identities, called the point loop
and the line loop equations for the triangle:

ebPbe−aPaecPc = e−(−A+B+C)JA eBJB e−AJAeCJC = e−(−a+b+c)Pa

ecPcebPbe−aPa = e−(−A+B+C)JB eCJCeBJB e−AJA = e−(−a+b+c)Pb

e−aPaecPcebPb = e−(−A+B+C)JC e−AJAeCJCeBJB = e−(−a+b+c)Pc .

(3.22)

Furthermore, each of these identities is equivalent to the identity in theorem 1.

We emphasize that all of these equations hold in the same explicit form for all 2D real CK
geometries, as no explicit κ1, κ2 ever appear in them.

4. Equations of trigonometry in the nine Cayley–Klein spaces

The most convenient way to obtain the trigonometric equations of the space S2
[κ1],κ2

is to start
with the basic trigonometric identity (3.21), in which from now on the two generators P and
J will be taken to be exactly P1 and J12. For convenience, we write (3.21) as

e−aP eCJ ebP = e−BJ e−cP eAJ . (4.1)

By considering this identity in the fundamental 3D vector representation of the motion group
(2.10) we obtain an equality between 3 × 3 matrices, giving rise to nine identities:

1c Cκ1(c) = Cκ1(a)Cκ1(b) + κ1Sκ1(a)Sκ1(b)Cκ2(C)

1C Cκ2(C) = Cκ2(A)Cκ2(B) + κ2Sκ2(A)Sκ2(B)Cκ1(c)

2cA ≡ 2aC Sκ1(c)Sκ2(A) = Sκ1(a)Sκ2(C)

2cB ≡ 2bC Sκ1(c)Sκ2(B) = Sκ1(b)Sκ2(C)

3cA Sκ1(c)Cκ2(A) = −Cκ1(a)Sκ1(b) + Sκ1(a)Cκ1(b)Cκ2(C)

3cB Sκ1(c)Cκ2(B) = Cκ1(b)Sκ1(a)− Sκ1(b)Cκ1(a)Cκ2(C)

3Ca Sκ2(C)Cκ1(a) = −Cκ2(A)Sκ2(B) + Sκ2(A)Cκ2(B)Cκ1(c)

3Cb Sκ2(C)Cκ1(b) = Cκ2(B)Sκ2(A)− Sκ2(B)Cκ2(A)Cκ1(c)

4AB ≡ 4ab κ2Sκ2(A)Sκ2(B) + Cκ2(A)Cκ2(B)Cκ1(c)

= κ1Sκ1(a)Sκ1(b) + Cκ1(a)Cκ1(b)Cκ2(C).

(4.2)

The tag assigned to each equation is self-descriptive: all equations are either self-dual (for
instance 2cA ≡ 2aC) or appear in mutually dual pairs (as (1c, 1C) or (3cA, 3Ca)). We remark
that all sides (respectively, angles) appear in the equations through the trigonometric functions
which have κ1 (respectively, κ2) as a label.

To describe clearly the structure and dependence between these equations, it is better to
consider the group of equations (4.2) together with two similar groups, each equivalent as a
set of equations to the previous one. These can be obtained by starting from the basic identity
written in two alternative forms as

ebP e−AJ ecP = e−CJ eaP e−BJ ecP eBJ e−aP = eAJ e−bP e−CJ . (4.3)

By writing them in the fundamental representation (2.10), we obtain two other sets of equations
very similar to (4.2). All the equations taken altogether can be grouped into the following:
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• Three cosine theorems for sides:

1a Cκ1(a) = Cκ1(b)Cκ1(c)− κ1Sκ1(b)Sκ1(c)Cκ2(A)

1b Cκ1(b) = Cκ1(a)Cκ1(c) + κ1Sκ1(a)Sκ1(c)Cκ2(B)

1c Cκ1(c) = Cκ1(a)Cκ1(b) + κ1Sκ1(a)Sκ1(b)Cκ2(C)

(4.4)

and three dual cosine theorems for angles:

1A Cκ2(A) = Cκ2(B)Cκ2(C)− κ2Sκ2(B)Sκ2(C)Cκ1(a)

1B Cκ2(B) = Cκ2(A)Cκ2(C) + κ2Sκ2(A)Sκ2(C)Cκ1(b)

1C Cκ2(C) = Cκ2(A)Cκ2(B) + κ2Sκ2(A)Sκ2(B)Cκ1(c).

(4.5)

• One self-dual sine theorem (obtained from the six equations 2cA, 2cB, . . . ):

2
Sκ1(a)

Sκ2(A)
= Sκ1(b)

Sκ2(B)
= Sκ1(c)

Sκ2(C)
. (4.6)

• Six ‘side addition’ theorems which correspond to the tags 3aB, 3aC, 3bA, 3bC, 3cA, 3cB
and six dual ‘angle addition’ theorems 3Ab, 3Ac, 3Ba, 3Bc, 3Ca, 3Cb.

• Three self-dual theorems 4AB ≡ 4ab, 4AC ≡ 4ac, 4BC ≡ 4bc.

Note the sign differences in 1a (1A) as compared with 1b, 1c (1B, 1C). These equations
are a complete set of trigonometric equations for any values of the constants κ1, κ2, but most
of them reduce to simpler, or even trivial ones in the degenerate cases κi = 0. In particular,
the cosine theorems (4.4) (respectively, (4.5)) give rise to trivial identities 1 = 1 when κ1 = 0
(respectively, κ2 = 0). This can be circumvented by writing these equations in an alternative
form. Take the cosine equation for the side c in the generic case with κ1 �= 0, and write all
cosines in terms of versed sines by introducing (A.2):

1 − κ1Vκ1(c) = (1 − κ1Vκ1(a))(1 − κ1Vκ1(b)) + κ1Sκ1(a)Sκ1(b)(1 − κ2Vκ2(C)). (4.7)

By expanding and cancelling a common factor κ1 we find that

Vκ1(c) = Vκ1(a) + Vκ1(b)− κ1Vκ1(a)Vκ1(b)− Sκ1(a)Sκ1(b) + κ2Sκ1(a)Sκ1(b)Vκ2(C) (4.8)

which is rather simplified by means of (A.10). The remaining cosine theorems allow a similar
reformulation. Thus we obtain the following alternative expressions:

1′a Vκ1(a)− Vκ1(b + c) = −κ2Sκ1(b)Sκ1(c)Vκ2(A)

1′b Vκ1(b)− Vκ1(a − c) = κ2Sκ1(a)Sκ1(c)Vκ2(B)

1′c Vκ1(c)− Vκ1(a − b) = κ2Sκ1(a)Sκ1(b)Vκ2(C)

(4.9)

1′A Vκ2(A)− Vκ2(B + C) = −κ1Sκ2(B)Sκ2(C)Vκ1(a)

1′B Vκ2(B)− Vκ2(A− C) = κ1Sκ2(A)Sκ2(C)Vκ1(b)

1′C Vκ2(C)− Vκ2(A− B) = κ1Sκ2(A)Sκ2(B)Vκ1(c).

(4.10)

(Note again the sign difference in 1′a and 1′A.) These relations are clearly equivalent to (4.4)
(respectively, (4.5)) when κ1 �= 0 (respectively, κ2 �= 0), but do not reduce to trivial identities
when κ1 = 0 or κ2 = 0. In this sense they can be considered as the ‘good’ form of cosine and
dual cosine equations. Equations (4.9) and (4.10) still allow another alternative very useful
form. Consider the half sums of the three sides and of the three angles (cf (A.15)):

p = 1
2 (a + b + c) P = 1

2 (A + B + C). (4.11)
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By introducing the identities (A.24) and (A.25) applied to the three sides a, b, c and angles
A,B,C into the cosine theorems (4.9) and (4.10), we obtain

1′′a 2Sκ1(p − a)Sκ1(p) = κ2Sκ1(b)Sκ1(c)Vκ2(A)

1′′b 2Sκ1(p − a)Sκ1(p − c) = κ2Sκ1(a)Sκ1(c)Vκ2(B)

1′′c 2Sκ1(p − a)Sκ1(p − b) = κ2Sκ1(a)Sκ1(b)Vκ2(C)

(4.12)

1′′A 2Sκ2(P − A)Sκ2(P ) = κ1Sκ2(B)Sκ2(C)Vκ1(a)

1′′B 2Sκ2(P − A)Sκ2(P − C) = κ1Sκ2(A)Sκ2(C)Vκ1(b)

1′′C 2Sκ2(P − A)Sκ2(P − B) = κ1Sκ2(A)Sκ2(B)Vκ1(c).

(4.13)

4.1. Dependence and sets of basic equations

The equations we have obtained so far contain the whole trigonometry of the CK space S2
[κ1],κ2

.
Nevertheless, not all of these equations can be independent: in any CK space, a triangle is
completely determined by three independent quantities so we should expect three independent
relations between the six quantities a, b, c;A,B,C.

Let us first discuss the case with κ1 = 0 but κ2 �= 0. In these degenerate cases we
obtain the well known trigonometry of the Euclidean plane (κ2 > 0), and the less well known
Lorentzian trigonometry of the (1 + 1)D Minkowskian spacetime (κ2 < 0) [1]. The formulae
(4.4) reduce to trivial identities 1 = 1, but the alternative expressions (4.9) or (4.12) lead to
the three ordinary flat Euclidean or Lorentzian cosine theorems, the latter exactly as given in
[1]. For instance, 1′c gives rise to

1
2c

2 − 1
2 (a − b)2 = κ2ab Vκ2(C) ≡ c2 = a2 + b2 − 2ab Cκ2(C). (4.14)

All the remaining equations of trigonometry do not reduce to identities and are directly
meaningful, yet simpler. By taking into account the sine and cosine addition identities (A.8)
and (A.9), we find that for κ1 = 0 the content of all of the dual cosine theorems (4.5) and all
of equations 3Ab, 3Ac, 3Ba, 3Bc, 3Ca, 3Cb, 4AB, 4AC, 4BC is the same and reduces to a
triangular angle addition in the form

A = B + C ≡ % = 0. (4.15)

The equality % = 0 implies that for κ1 = 0 the holonomy (3.14) is equal to the identity,
as it should in any flat space. In these flat spaces where κ1 = 0 the angles are related by
a ‘universal’ linear equation which is not dependent on the sides. This universality is why
the equality A = B + C is usually taken as a property of Euclidean geometry, and not as a
trigonometric equation. The sine theorem (4.6) now reads

a

Sκ2(A)
= b

Sκ2(B)
= c

Sκ2(C)
(4.16)

and the remaining equations 3aB, 3aC, 3bA, 3bC, 3cA, 3cB give each side as the sum of the
projections of the other two. In particular, relations 3cA and 3cB in (4.2) reduce to

b = aCκ2(C)− cCκ2(A) a = bCκ2(C) + cCκ2(B). (4.17)

Note that the three cosine theorems 1′a, 1′b, 1′c (as (4.14)) are still independent. From these
we can derive all the remaining non-trivial equations, including the dual cosine theorem (4.15),
the sine theorem (4.16) and the relations on the sum of the projections as (4.17). Henceforth,
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when κ1 = 0 but κ2 �= 0, the canonical choice for three independent equations is the three
alternative cosine theorems (4.9) for the three sides.

A fully parallel dual discussion can be repeated for the case κ2 = 0 but with κ1 �= 0. Then
equations (4.5) give rise to trivial identities, while (4.10) or (4.13) provide the dual cosine
theorems for the angles, which are the three independent equations. The relations (4.4), 3aB,
3aC, 3bA, etc reduce to the same single equation:

a = b + c ≡ δ = 0. (4.18)

Finally, in the more contracted case with κ1 = κ2 = 0, that is, the (1 + 1)D Galilean
geometry, the equations are fully linear and read

a = b + c A = B + C
a

A
= b

B
= c

C
. (4.19)

All the results concerning the dependence of equations can be summed up in the following.

Theorem 3. The full set of equations of trigonometry always contains (i.e. for any value of
κ1, κ2) exactly three independent equations. Any other equation in the set is a consequence of
them. According to the values of κ1, κ2 we find the following cases.

• When κ1 �= 0 and κ2 �= 0, the trigonometry follows from either (4.9) or (4.10).
• When κ1 = 0 but κ2 �= 0, the trigonometry follows from (4.9).
• When κ1 �= 0 but κ2 = 0, the trigonometry follows from (4.10).
• When κ1 = κ2 = 0, the trigonometry follows from (4.19).

We display in table 2 the cosine, dual cosine and sine theorems for each of the nine CK
geometries according to the values of the curvatures (κ1, κ2).

While the equations we have obtained hold for all the nine 2D CK geometries, the spaces
whose trigonometry is well known are the three Riemannian spaces of constant curvature—
the sphere, the Euclidean plane and the hyperbolic plane—which are the CK geometries with
κ2 > 0. In these three spaces the usual ‘natural’ choice of angle units corresponds to making
κ2 = 1. Therefore, by setting κ1 = κ and κ2 = 1, our generic relations give directly the
so-called ‘absolute’ form of trigonometry, which is valid for the three Riemannian spaces of
constant curvature κ simultaneously [3, 7, 8]. In this connection an elementary but relevant
point should be kept in mind: spherical, Euclidean and hyperbolic trigonometry is usually
formulated in terms of the inner angles. However, when the triangle is seen as a line loop,
one of the angles must be an external angle, like our A. When κ2 = 1, the measure of a
straight angle is equal to π , and the three internal angles α, β, γ are related to our A, B, C
as α = π − A, β = B, γ = C, so that the triangle angular excess %, usually defined as
α + β + γ − π appears here as −A + B + C, and thus it does not involve π . These facts
account for all apparent discrepancies between the particularization of the general equations
given in this paper and those found in the literature for the three Riemannian spaces [27–29].
The use of the three inner angles makes π enter unavoidably into the angle sum, the definition
of angular excess, the Gauss–Bonnet theorem, etc, and thus seems to preclude analogous
relations in the cases with a locally Lorentzian metric, where π does not properly belong
anymore.

Thus the choice for angles in this paper is carried out consistently in all the nine CK
spaces and their trigonometry is formulated in a single unified way where all equations are
analogous and directly meaningful in all cases. Hence our approach is more general than
absolute trigonometry. Nevertheless, to unfold this view we have to abandon the implicit
restriction κ2 = 1 which amounts to measuring angles in radians and is universally enforced
for the three Riemannian cases. While the curvature κ1 allows us to explicitly distinguish
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Table 2. Cosine, sine and dual cosine theorems for the nine CK spaces.

Elliptic (+1,+1) Euclidean (0,+1) Hyperbolic (−1,+1)
SO(3)/SO(2) ISO(2)/SO(2) SO(2, 1)/SO(2)

cos a = cos b cos c − sin b sin c cosA a2 = b2 + c2 + 2bc cosA cosh a = cosh b cosh c + sinh b sinh c cosA
cos b = cos a cos c + sin a sin c cosB b2 = a2 + c2 − 2ac cosB cosh b = cosh a cosh c − sinh a sinh c cosB
cos c = cos a cos b + sin a sin b cosC c2 = a2 + b2 − 2ab cosC cosh c = cosh a cosh b − sinh a sinh b cosC
sin a

sinA
= sin b

sinB
= sin c

sinC

a

sinA
= b

sinB
= c

sinC

sinh a

sinA
= sinh b

sinB
= sinh c

sinC
cosA = cosB cosC − sinB sinC cos a A = B + C cosA = cosB cosC − sinB sinC cosh a
cosB = cosA cosC + sinA sinC cos b B = A− C cosB = cosA cosC + sinA sinC cosh b
cosC = cosA cosB + sinA sinB cos c C = A− B cosC = cosA cosB + sinA sinB cosh c

Co-Euclidean (+1, 0) Galilean (0, 0) Co-Minkowskian (−1, 0)
Oscillating NH ISO(2)/R IISO(1)/R Expanding NH ISO(1, 1)/R

a = b + c a = b + c a = b + c
b = a − c b = a − c b = a − c
c = a − b c = a − b c = a − b
sin a

A
= sin b

B
= sin c

C

a

A
= b

B
= c

C

sinh a

A
= sinh b

B
= sinh c

C

A2 = B2 + C2 + 2BC cos a A = B + C A2 = B2 + C2 + 2BC cosh a
B2 = A2 + C2 − 2 AC cos b B = A− C B2 = A2 + C2 − 2 AC cosh b
C2 = A2 + B2 − 2 AB cos c C = A− B C2 = A2 + B2 − 2 AB cosh c

Co-hyperbolic (+1,−1) Minkowskian (0,−1) Doubly hyperbolic (−1,−1)
Anti-de Sitter SO(2, 1)/SO(1, 1) ISO(1, 1)/SO(1, 1) de Sitter SO(2, 1)/SO(1, 1)

cos a = cos b cos c − sin b sin c coshA a2 = b2 + c2 + 2bc coshA cosh a = cosh b cosh c + sinh b sinh c coshA
cos b = cos a cos c + sin a sin c coshB b2 = a2 + c2 − 2ac coshB cosh b = cosh a cosh c − sinh a sinh c coshB
cos c = cos a cos b + sin a sin b coshC c2 = a2 + b2 − 2ab coshC cosh c = cosh a cosh b − sinh a sinh b coshC
sin a

sinhA
= sin b

sinhB
= sin c

sinhC

a

sinhA
= b

sinhB
= c

sinhC

sinh a

sinhA
= sinh b

sinhB
= sinh c

sinhC
coshA = coshB coshC + sinhB sinhC cos a A = B + C coshA = coshB coshC + sinhB sinhC cosh a
coshB = coshA coshC − sinhA sinhC cos b B = A− C coshB = coshA coshC − sinhA sinhC cosh b
coshC = coshA coshB − sinhA sinhB cos c C = A− B coshC = coshA coshB − sinhA sinhB cosh c
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between the sphere, Euclidean and hyperbolic plane in the absolute trigonometry, the ‘dual’
constant κ2 is restricted to a single particular (positive) value, so it cannot be given the attention
it deserves when it is allowed to take on any real value. Furthermore, the usual definition of two-
point homogeneity [24] excludes the degenerate Riemannian and pseudo-Riemannian spaces.
In this respect, the explicit presence of κ2 allows the consideration of the scheme within a
complete duality, which otherwise would be hidden, showing up only in the spherical case.
For instance, the dual of the hyperbolic geometry is the anti-de Sitter one, the natural metric
of which is Lorentzian; simultaneous consideration of Riemannian and pseudo-Riemannian
cases is therefore essential to fully display duality.

4.2. A compact notation

In this section we introduce a compact notation which allows us to get rid of the casual signs
related to a,A. Let us denote the three sides as xi , i = 1, 2, 3 and the three angles as XI ,
I = 1, 2, 3 according to

x1 = −a x2 = b x3 = c X1 = −A X2 = B X3 = C. (4.20)

With this notation, the basic equation (3.21) based in the vertex j can be written as

exiP eXKJ exjP eXI J exkP eXJ J = 1 (4.21)

for any cyclic permutation i = I, j = J, k = K of the three indices 123. The triangular
loop lateral excess δ (3.18) and angular excess % (3.16) appear in the present notation as the
symmetric sums of the three ‘oriented’ sides or angles as

δ = x1 + x2 + x3 = −a + b + c % = X1 +X2 +X3 = −A + B + C. (4.22)

It will also be convenient to replace the excesses by the quantities

e := δ/2 E := %/2 (4.23)

and to introduce three other quantities as well as their three duals:

ei := xi − e EI := XI − E (4.24)

which are related to the half sums p and P (4.11) by

e = p − a e1 = −p e2 = p − c e3 = p − b
E = P − A E1 = −P E2 = P − C E3 = P − B. (4.25)

Note that e1 is different from zero and negative, while e2, e3 are (generically) different from
zero and positive, just like the three sides x1 and x2, x3. The same holds for the quantities
related to angular excesses. If κ2 = 0 then the three ei reduce to the sides xi (δ = e = 0).
Dually, if κ1 = 0 then the three EI reduce to the angles XI (% = E = 0).
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In terms of this notation, the equations of trigonometry, including the alternative forms
for the cosine theorems (4.12) and (4.13), can be written in a ‘compact form’ as

1i Cκ1(xi) = Cκ1(xj )Cκ1(xk)− κ1Sκ1(xj )Sκ1(xk)Cκ2(XI )

1I Cκ2(XI ) = Cκ2(XJ )Cκ2(XK)− κ2Sκ2(XJ )Sκ2(XK)Cκ1(xi)

1′′i 2Sκ1(e)Sκ1(ei) = −κ2Sκ1(xj )Sκ1(xk)Vκ2(XI )

1′′I 2Sκ2(E)Sκ2(EI ) = −κ1Sκ2(XJ )Sκ2(XK)Vκ1(xi)

2
Sκ1(xi)

Sκ2(XI )
= Sκ1(xj )

Sκ2(XJ )
= Sκ1(xk)

Sκ2(XK)

3iJ Sκ1(xi)Cκ2(XJ ) = −Cκ1(xj )Sκ1(xk)− Sκ1(xj )Cκ1(xk)Cκ2(XI )

3Ij Sκ2(XI )Cκ1(xj ) = −Cκ2(XJ )Sκ2(XK)− Sκ2(XJ )Cκ2(XK)Cκ1(xi)

4IJ ≡ 4ij κ2Sκ2(XI )Sκ2(XJ )− Cκ2(XI )Cκ2(XJ )Cκ1(xk)

= κ1Sκ1(xi)Sκ1(xj )− Cκ1(xi)Cκ1(xj )Cκ2(XK).

(4.26)

When κ2 = 0, the three equations 1′′i clearly imply Sκ1(e) = 0, but the quotient Sκ1(e)/κ2

remains finite, and is given by

Sκ1(e)

κ2
= −Sκ1(xj )Sκ1(xk)Vκ2(XI )

2Sκ1(ei)
. (4.27)

Dually, when κ1 = 0, equations 1′′I lead to Sκ2(E) = 0, but the quotient Sκ2(E)/κ1 remains
finite:

Sκ2(E)

κ1
= −Sκ2(XJ )Sκ2(XK)Vκ1(xi)

2Sκ2(EI )
. (4.28)

4.3. Area and co-area and the dualities length/area and angle/co-area

The previous expressions show the natural appearance in this group-theoretical approach of
the combinations Sκ1(e)/κ2 and Sκ2(E)/κ1 which are always well defined. By construction,
the angular excess of a triangle loop is additive under decomposition of a triangle loop into
two. Thus it is obvious that Sκ2(E)/κ1 is related to the triangular loop area. This relation
is very well known in the two Riemannian spherical and hyperbolic geometries, where the
standard expression for the absolute value S of the area enclosed by the triangle loop is easy
to derive from the Gauss–Bonnet theorem and is related to the angular excess by κ1S = %.
This suggests a purely group-theoretical definition of area S and its dual quantity co-area s
for triangle loops as

S := %

κ1
s := δ

κ2
. (4.29)

These definitions hold for all nine 2D CK spaces, no matter what the values of κ1 or κ2, and
hence apply also to the pseudo-Riemannian and degenerate Riemannian CK spaces.

All appearances of Sκ2(E)/κ1 in the equations of trigonometry could be rewritten in terms
of trigonometric functions of the area of the loop. The same happens dually for Sκ1(e)/κ2 in
terms of co-area. In this rewriting, the label naturally associated with area is κ2

1κ2, while the
co-area label is κ1κ

2
2 . This makes sense as area should be to the product P1P2 and co-area to
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J12P2 what length—with label κ1—is to P1, and angle—with label κ2—is to J12. For the two
basic sine and cosine functions of area and co-area we have

Cκ2
1 κ2
(S) := Cκ2(%) = Cκ2(2E) Sκ2

1 κ2
(S) := Sκ2(%)

κ1
= Sκ2(2E)

κ1

Cκ1κ
2
2
(s) := Cκ1(δ) = Cκ1(2e) Sκ1κ

2
2
(s) := Sκ1(δ)

κ2
= Sκ1(2e)

κ2
.

(4.30)

The length/area and angle/co-area dualities for the sphere have been recently discussed by
Arnol’d [30] in a paper devoted to the geometry of spherical curves. These ‘dualities’ are indeed
a general property for all nine CK geometries, and follow directly from the fundamental self-
duality of the whole CK scheme (between lengths and angles), together with the ‘transference’
from anglesE (or%) to areas S/2 (or from lengths e (or δ) to co-areas s/2) implicitly contained
in equations (4.30). However, while these dualities are present in all CK geometries, they are
only clearly visible for the sphere, where by a suitable choice of length and angle units the
constants κ1 and κ2 can be reduced to 1. In this spherical case the labels of either length,
angle, area or co-area are all equal, so the transference from angle to area (or length to co-area)
amounts to a simple equality between numerical values. In other CK geometries where some
of the constants are negative, unveiling these dualities requires explicit use of a transference
similar to those in (4.30).

By adding the area S and co-area s, to sides (xi, ei) and angles (XI ,EI ), all the basic
equations can be written in a minimal form, with no explicit constants κ1, κ2, as

1′′i Sκ1κ
2
2
(s/2)Sκ1(ei) = −Sκ1(xj )Sκ1(xk)S

2
κ2
(XI/2)

1′′I Sκ2
1 κ2
(S/2)Sκ2(EI ) = −Sκ2(XJ )Sκ2(XK)S

2
κ1
(xi/2)

2
Sκ1(xi)

Sκ2(XI )
= Sκ1(xj )

Sκ2(XJ )
= Sκ1(xk)

Sκ2(XK)
.

(4.31)

Two points are worth noting. First, the corresponding equations for any two particular spaces
only differ by the implicit appearances of the constants κ1, κ2 (and also κ2

1κ2, κ1κ
2
2 ) as labels

of the trigonometric functions of sides, angles (and also area, co-area), respectively. This
is reminiscent of the minimal coupling idea in general relativity: no explicitly dependent
curvature terms should be introduced in the basic free equations when formulating the
corresponding equation for a curved spacetime, but only those introduced implicitly through
the connection (recall κ1, κ2 can indeed be interpreted as curvatures). Secondly, the only
trigonometric function in these equations is the sine, which reduces to the variable itself when
the label equals zero; the implementation of this kind of ‘minimal coupling’ to obtain the general
equations (4.31) consists simply in replacing by their sines, each with the corresponding label,
each term entering the ‘purely flat’ κ1 = 0, κ2 = 0 equations

1′′i (s/2)ei = −xjxk(XI/2)2
1′′I (S/2)EI = −XJXK(xi/2)2

2
xi

XI
= xj

XJ
= xk

XK
.

(4.32)

4.4. A trigonometric bestiarium and some historical comments

Starting from the set of basic equations (4.31), we can easily derive a complete trigonometric
bestiarium [10]; necessary trigonometric identities for this derivation can be found in the
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Table 3. Equations of Euler, Gauss–Delambre–Mollweide and Napier.

Equations of Euler

S2
κ1

( 1
2 xi

) = −
Sκ2

1 κ2
(S/2)Sκ2 (EI )

Sκ2 (XJ )Sκ2 (XK)
S2
κ2

( 1
2XI

) = −
Sκ1κ

2
2
(s/2)Sκ1 (ei )

Sκ1 (xj )Sκ1 (xk)

C2
κ1

( 1
2 xi

) = Sκ2 (EJ )Sκ2 (EK)

Sκ2 (XJ )Sκ2 (XK)
C2
κ2

( 1
2XI

) = Sκ1 (ej )Sκ1 (ek)

Sκ1 (xj )Sκ1 (xk)

Sκ1 (xi )

Sκ2 (XI )
= Sκ1 (xj )

Sκ2 (XJ )
= Sκ1 (xk)

Sκ2 (XK)
=

{−Sκ1κ
2
2
(s/2)Sκ1 (ei )Sκ1 (ej )Sκ1 (ek)}1/2

{−Sκ2
1 κ2
(S/2)Sκ2 (EI )Sκ2 (EJ )Sκ2 (EK)}1/2

Equations of Gauss–Delambre–Mollweide
Sκ2

( 1
2 (XI +XJ )

)
Sκ2

( 1
2XK

) = −Cκ1

( 1
2 (xi − xj )

)
Cκ1

( 1
2 xk

) Cκ2

( 1
2 (XI +XJ )

)
Cκ2

( 1
2XK

) = Cκ1

( 1
2 (xi + xj )

)
Cκ1

( 1
2 xk

)
Sκ2

( 1
2 (XI −XJ )

)
Sκ2

( 1
2XK

) = Sκ1

( 1
2 (xi − xj )

)
Sκ1

( 1
2 xk

) Cκ2

( 1
2 (XI −XJ )

)
Cκ2

( 1
2XK

) = −Sκ1

( 1
2 (xi + xj )

)
Sκ1

( 1
2 xk

)
Equations of Napier

Tκ2

( 1
2 (XI +XJ )

)
Tκ2

( 1
2XK

) = −Cκ1

( 1
2 (xi − xj )

)
Cκ1

( 1
2 (xi + xj )

) Tκ2

( 1
2 (XI −XJ )

)
Tκ2

( 1
2XK

) = −Sκ1

( 1
2 (xi − xj )

)
Sκ1

( 1
2 (xi + xj )

)
Tκ1

( 1
2 (xi + xj )

)
Tκ1

( 1
2 xk

) = −Cκ2

( 1
2 (XI −XJ )

)
Cκ2

( 1
2 (XI +XJ )

) Tκ1

( 1
2 (xi − xj )

)
Tκ1

( 1
2 xk

) = −Sκ2

( 1
2 (XI −XJ )

)
Sκ2

( 1
2 (XI +XJ )

)

Table 4. Some equations for the area.

Trigonometric functions of the area

Cκ2
1 κ2
(S) = [1 + Cκ1 (xi ) + Cκ1 (xj ) + Cκ1 (xk)]

2 − 8C2
κ1
( 1

2 xi)C
2
κ1
( 1

2 xj )C
2
κ1
( 1

2 xk)

8C2
κ1
( 1

2 xi)C
2
κ1
( 1

2 xj )C
2
κ1
( 1

2 xk)

Sκ2
1 κ2
(S) = −Sκ1 (xi )Sκ1 (xj )Sκ2 (XK)[1 + Cκ1 (xi ) + Cκ1 (xj ) + Cκ1 (xk)]

8C2
κ1
( 1

2 xi)C
2
κ1
( 1

2 xj )C
2
κ1
( 1

2 xk)

Trigonometric functions of one-half the area

Cκ2
1 κ2

( 1
2 S) = 1 + Cκ1 (xi ) + Cκ1 (xj ) + Cκ1 (xk)

4Cκ1 (
1
2 xi)Cκ1 (

1
2 xj )Cκ1 (

1
2 xk)

Sκ2
1 κ2

( 1
2 S) = − Sκ2 (XI )Sκ1 (xj )Sκ1 (xk)

4Cκ1 (
1
2 xi)Cκ1 (

1
2 xj )Cκ1 (

1
2 xk)

= {−(Sκ1 (e)/κ2)Sκ1 (ei )Sκ1 (ej )Sκ1 (ek)}1/2

2Cκ1 (
1
2 xi)Cκ1 (

1
2 xj )Cκ1 (

1
2 xk)

Tκ2
1 κ2

( 1
2 S) = − Sκ2 (XI )Tκ1 (

1
2 xj )Tκ1 (

1
2 xk)

1 − κ1Cκ2 (XI )Tκ1 (
1
2 xj )Tκ1 (

1
2 xk)

Trigonometric functions of one-fourth the area

C2
κ2

1 κ2

( 1
4 S) = Cκ1 (

1
2 e)Cκ1 (

1
2 ei )Cκ1 (

1
2 ej )Cκ1 (

1
2 ek)

Cκ1 (
1
2 xi)Cκ1 (

1
2 xj )Cκ1 (

1
2 xk)

S2
κ2

1 κ2

( 1
4 S) = − (Sκ1 (

1
2 e)/κ2)Sκ1 (

1
2 ei )Sκ1 (

1
2 ej )Sκ1 (

1
2 ek)

Cκ1 (
1
2 xi)Cκ1 (

1
2 xj )Cκ1 (

1
2 xk)

T 2
κ2

1 κ2

( 1
4 S) = −Tκ1 (

1
2 e)

κ2
Tκ1

( 1
2 ei

)
Tκ1

( 1
2 ej

)
Tκ1

( 1
2 ek

)

Tκ1 (
1
2 ei )

Tκ2 (
1
2EI )

= Tκ1 (
1
2 ej )

Tκ2 (
1
2EJ )

= Tκ1 (
1
2 ek)

Tκ2 (
1
2EK)

= Tκ2 (
1
2E)/κ1

Tκ1 (
1
2 e)/κ2

=
Tκ2

1 κ2
(S/4)

Tκ1κ
2
2
(s/4)

appendix. We present the most relevant equations in tables 3 and 4 in a way which is
simultaneously meaningful for all nine CK geometries.



Trigonometry of spacetimes 4545

We note that the sine theorem as reformulated in table 3 leads to the following inequalities
that ensure a triangle in the CK space with constants κ1, κ2 exists:

E > 0 when κ1 > 0 E < 0 when κ1 < 0

e > 0 when κ2 > 0 e < 0 when κ2 < 0.
(4.33)

At this point, some historical comments seem to be pertinent. Trigonometry, motivated
mainly in the spherical case by astronomy, has a very interesting and well documented history.
A good authoritative reference for its historical development is the book by Rozenfel’d [31];
Ratcliffe [28] also contains historical notes. A standard reference for spherical trigonometry
covering all the spherical versions of the equations we have presented here and much more
(and which suitably reformulated also extends without exception to the nine geometries), is
the book by Todhunter–Leathem [32]. Hyperbolic trigonometry was first satisfactorily settled
by Lobachewski and Bolyai and is an essential tool when studying hyperbolic manifolds (see,
for example, [27–29]).

The consideration of cosine and dual cosine theorems 1i and 1I as the basic equations of
spherical trigonometric dates back to Euler, but the ‘alternative’ form 1′i is much older and
essentially is the one given by Regiomontanus. The spherical cosine equations themselves are
usually ascribed to Albategnius, and the first explicit appearance of the dual cosine equations
is ascribed to Vieta, even though spherical polarity was clear to al-T. ūsı̄ in the 13th century. In
table 3, the first set of formulae are the CK versions of the spherical formulae due to Euler, while
the third set of equations are the general versions of Gauss–Delambre–Mollweide analogies
(in the old meaning of proportion), and the last equations are the general version of the Napier
analogies. In table 4, the formula for the sine of one-half area is known in the spherical case
as Cagnoli’s theorem, and the expression for the tangent of one-fourth the area of a spherical
triangle in terms of the sides is due to L’Huillier, extending the Euclidean Heron–Archimedes
area formula. Most formulae for spherical triangle area in terms of sides and/or angles were
obtained by Euler. Other formulae for the trigonometric functions of one-half or one-fourth
the area are also known in the spherical case, but bear no name; some are due to L’Huillier and
Serret.

5. On the trigonometry of homogeneous spacetimes

In order to facilitate the reading of the general equations obtained here, in table 5 we present a
sample of equations for the area in the six homogeneous spacetimes: the generalized formula
of Cagnoli and that of Heron–L’Huillier as well as the last equation of table 4 that relates area
and co-area. We use explicitly the universe (time) radius τ and the relativistic constant c;
recall that the CK constants in the kinematic interpretation (2.8) of the CK space of points as
(1 + 1)D spacetime are κ1 = ±1/τ 2 and κ2 = −1/c2. To stress that in the (1 + 1)D spacetime
sides are proper times and angles are rapidities, we denote the (time) side lengths by τa, τb, τc,
the angles by χA, χB, χC , and τp := (τa + τb + τc)/2, χP := (χA + χB + χC)/2. Should these
equations be extended to include the κ2 > 0 case (say, let κ2 = 1/c2), then c would play the
role of a conversion constant between radians and the chosen angular measure.

A suitable view of the general trigonometric equations is as a kind of deformation of the
purely linear equations (4.19) governed by the two constants κ1, κ2, which determine spacetime
curvatures and/or signatures of the metric. From this viewpoint, it is clear that the good ‘totally
flat’ reference 2D geometry is not the Euclidean one, but should be instead the Galilean
one. The kinematic interpretation of the three basic trigonometric equations in Galilean
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Table 5. Some equations involving the area S and co-area s of a timelike triangle in the six homogeneous spacetimes with (κ1 = ±1/τ 2, κ2 = −1/c2).

Relative-time spacetimes Absolute-time spacetimes

Anti-de Sitter (+1/τ 2,−1/c2) Oscillating NH (+1/τ 2, 0) c = ∞
sinh

( S
2τ 2c

)
= sin(τa/τ) sin(τb/τ) sinh(χC/c)

4 cos(τa/2τ) cos(τb/2τ) cos(τc/2τ)
S = τ 2 sin(τa/τ) sin(τb/τ)χC

2 cos(τa/2τ) cos(τb/2τ) cos(τc/2τ)

tanh2
( S

4τ 2c

)
= − tan

( τp
2τ

)
tan

(
τp−τa

2τ

)
tan

(
τp−τb

2τ

)
tan

(
τp−τc

2τ

)
S2 = 4sτ 3 tan

(τp
2τ

)
tan

(
τp − τb

2τ

)
tan

(
τp − τc

2τ

)

tanh(S/4τ 2c)

tan(s/4τc2)
= tan(τp/2τ)

tanh(χP /2c)
= tan((τp − τb)/2τ)

tanh((χP − χB)/2c) = tan((τp − τc)/2τ)
tanh((χP − χC)/2c)

S
s

= τ tan(τp/2τ)
1
2χP

= τ tan((τp − τb)/2τ)
1
2 (χP − χB)

= τ tan((τp − τc)/2τ)
1
2 (χP − χC)

Minkowskian (0,−1/c2) τ = ∞ Galilean (0, 0) τ = ∞, c = ∞
S = 1

2 τaτb c sinh
(χC
c

)
S = 1

2 τaτbχC

S2 = −c2τp(τp − τa)(τp − τb)(τp − τc) S2 = 1
2 sτp(τp − τb)(τp − τc)

S
s

= τp/2

c tanh(χP /2c)
= (τp − τb)/2
c tanh((χP − χB)/2c) = (τp − τc)/2

c tanh((χP − χC)/2c)
S
s

= τp

χP
= τp − τb
χP − χB = τp − τc

χP − χC

de Sitter (−1/τ 2,−1/c2) Expanding NH (−1/τ 2, 0) c = ∞

sinh

( S
2τ 2c

)
= sinh(τa/τ) sinh (τb/τ) sinh(χC/c)

4 cosh(τa/2τ) cosh(τb/2τ) cosh(τc/2τ)
S = τ 2 sinh(τa/τ) sinh(τb/τ)χC

2 cosh(τa/2τ) cosh(τb/2τ) cosh(τc/2τ)

tanh2
( S

4τ 2c

)
= − tanh

( τp
2τ

)
tanh

(
τp−τa

2τ

)
tanh

(
τp−τb

2τ

)
tanh

(
τp−τc

2τ

)
S2 = 4sτ 3 tanh

( τp
2τ

)
tanh

(
τp − τb

2τ

)
tanh

(
τp − τc

2τ

)

tanh(S/4τ 2c)

tanh(s/4τc2)
= tanh(τp/2τ)

tanh(χP /2c)
= tanh((τp − τb)/2τ)

tanh((χP − χB)/2c) = tanh((τp − τc)/2τ)
tanh((χP − χC)/2c)

S
s

= τ tanh(τp/2τ)

χP /2
= τ tanh((τp − τb)/2τ)

(χP − χB)/2 = τ tanh((τp − τc)/2τ)
(χP − χC)/2
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spacetime, where rapidities, defined as the canonical parameter of subgroups of pure inertial
transformations, are equal to ordinary velocities, is clear:

τa = τb + τc χA = χB + χC
τa

χA
= τb

χB
= τc

χC
. (5.1)

The first equation means that the (proper) time interval along any future timelike curve depends
only on the endpoints, and corresponds to the absolute time; the same equation holds in both
Newton–Hooke cases (see table 2). The second is the additivity, in Galilean spacetime, of the
relative rapidities of three non-concurrent free motions; this also holds in the Minkowskian
case, but not in the four curved spacetimes. This relation should not be confused with the
additivity of relative rapidities for co-planar and concurrent free motions, which holds in all
cases because rapidities are defined as canonical parameters of the one-parameter subgroup
generated by K. The third equation states that relative rapidities and time interval lengths in
any triangle in Galilean spacetime are proportional; this is an absolutely elementary property
of classical spacetime and holds only in this case. For the area and co-area of a Galilean
triangle we have

S = 1
2χAτbτc s = 1

2τaχBχC. (5.2)

We recall that the co-area of a triangular loop in the six kinematic spaces is (proportional) to
the difference of actions for a free particle following either of the two worldlinesCB andCAB
which determine the triangle loop [33].

These purely linear equations allow a deformation in two different senses [17], either by
endowing spacetime with curvature κ1 �= 0 (obtaining the two Newton–Hooke spacetimes), or
keeping it flat but introducing curvature, necessarily negative if causality must be preserved,
in the space of timelike lines, described by the constant κ2 < 0 (obtaining the Minkowskian
spacetime of special relativity). If both processes are used simultaneously, we obtain the two
de Sitter spacetimes.

This structural ‘unfolding’ of the complete CK scheme starting from its most degenerate
case runs in a striking parallel with the historical development. Spacetime is nearly flat at the
time and length of human scales: this fact lies behind classical physics. With hindsight, we
can say that to assume a flat (i.e. κ1 = 0) homogeneous model for the (1 + 1)D spacetime
involved in 1D kinematics was natural. At the human (or even solar system) speed scale,
the curvature in the space of uniform motions is also negligible, so to assume again a flat
space of motions (or timelike lines), embodied in the equality κ2 = 0 for the 1D kinematic
group, was the only practical choice. Both assumptions greatly simplified (or rather, allowed)
the linear mathematical description of classical physics. However, even at the homogeneous
level of approximation, nature does not seem to be characterized by these non-generic choices.
Relativity can be described as the discovery of a negative curvature in the space of 1D motions,
and then the all-important relativistic constant c appears simply as related to the value of the
curvature of this space of motions by κ2 = −1/c2. Special relativity still keeps a flat spacetime,
another approximation which is abandoned, in a way much more general than by assuming
it to be homogeneous, in the context of general relativity; if homogeneity is still kept, the
possibilities are κ1 = ±1/τ 2.

Before spacetime geometry was under consideration, a similar situation arose for the
physical 3D space geometry, whose characterization among the mathematical possibilities
was at the root of Riemann’s programme. General 3D CK spaces are parametrized by three
CK constants, say µ1, µ2, µ3 and correspond to a space with constant curvature µ1 and
whose metric is reducible at each point to diag(1, µ2, µ2µ3); restriction to a locally Euclidean
space is embodied in the choices µ2 > 0, µ3 > 0. In the (1 + 3)D homogeneous spacetime
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SOκ1,κ2,κ3,κ4(5)/SOκ2,κ3,κ4(4) [14, 15], whose labels are κ1 = ±1/τ 2, κ2 = −1/c2, κ3 = 1,
κ4 = 1, the 3-space orthogonal to the fiducial timelike line through the origin (and hence
all 3-spaces orthogonal to any timelike line) can be identified with the homogenous space
SOκ1κ2,κ3,κ4(4)/SOκ3,κ4(3). Hence the constants µ1, µ2, µ3 are given by µ1 = κ1κ2, µ2 = κ3,
µ3 = κ4 so that the curvature of the 3-space orthogonal to a given timelike direction is
the product κ1κ2 = ∓1/(τ 2c2). This means that in the non-relativistic spacetimes, even if
spacetime is curved, the 3-space is flat. In the three relativistic cases, the 3-space is only flat
in the Minkowskian case, but is curved in the anti-de Sitter (space curvature −1/(τ 2c2)) and
de Sitter spacetimes (space curvature 1/(τ 2c2)). In both cases the universe radius R, with
dimensions of space-length, is given by R = cτ .

Here we also have a clear example of hidden universal constants, in the sense given to this
term by Lévy-Leblond [34]: both κ3 and κ4 are not usually considered as universal constants
only because the fact that they are non-zero and positive allows us to make them apparently
disappear by reducing them to the value 1 (thus making plane angles and dihedral space angles
apparently dimensionless). Once performed, this reduction forbids further consideration of
these constants and the possibility that they could be either zero or negative in other conceivable
but still homogeneous spaces is simply out of sight. The character of κ1κ2 as a possible universal
constant was understood much earlier: Lobachewski explored the possibility of physical 3-
space geometry being hyperbolic (i.e. negatively curved), and tried to give experimental bounds
to a constant he called k (in modern terms, the curvature would be −1/k2) for our physical
space under the assumption that light travels along geodesics in this physical 3-space; the
argument is based on the existence of a minimum parallax (for a given baseline) even for
infinitely distant stars [7, 35]. The founding fathers of hyperbolic geometry could have hardly
imagined that the geometry they were discovering/inventing was indeed realized by nature and
to a good approximation, not as the geometry of space itself, but as the geometry of the space
of uniform motions.

6. Concluding remarks

Although we have not covered any applications here, we should point to the relevance of many
of the complicated trigonometric equations whose ‘general’ form we have derived in several
fields. For instance, they appear in the Zamolodchikov solution for tetrahedral equations
as factorization conditions for the S-matrix in (1 + 2)D [36, 37], both reproduced in [38].
The extension of the Moyal-type formulation of quantum mechanics to spaces with constant
curvature also involves many of the complicated equations for spherical or hyperbolic area in
terms of sides. A recent paper by Jing-Ling Chen and Mo-Lin Ge [39] identifies the Wigner
angle of the rotation appearing in the product of pure Lorentz transformations to the defect
of a triangle in hyperbolic geometry; this and analogous results can also be deduced from
our approach. Analogous results involving triangle defects appear in relation to geometrical
phases. Triangles in anti-de Sitter and de Sitter spaces also display properties similar to the
‘parallelism angle’ found in hyperbolic geometry, and are related to the existence of horizons.

As far as we know, the approach we have given to the trigonometry of the real CK spaces is
new, and we have also obtained some results apparently unknown on the trigonometry of several
spacetimes. In spite of this, we feel that the main value of this paper is to display in this simplest
case (the symmetric rank-one homogeneous spaces of real type and their limiting spaces) the
potentialities this group-theoretical approach to trigonometry has for the study of many other
interesting spaces whose trigonometry is still unknown. Pursuing this line, the trigonometry
of complex, quaternionic and octonionic type CK spaces will be discussed in a forthcoming
companion paper [23]; only the complex case is really relevant, as the others reduce directly to
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the complex case. Although primarily mathematical, the study of trigonometry in Hermitian
complex spaces has a very direct and deep connection with physics, the link being the geometry
of the quantum space of states [40, 41].
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Appendix. Some relations for the trigonometric functions

The main identities for the trigonometric functions defined in (2.11)–(2.13) depending on a
(curvature) label κ and involving one or two arbitrary arguments x, y are given by [10]

C2
κ (x) + κS2

κ (x) = 1 (A.1)

Cκ(x) = 1 − κVκ(x) (A.2)

Cκ(2x) = C2
κ (x)− κS2

κ (x) (A.3)

Sκ(2x) = 2Sκ(x)Cκ(x) (A.4)

C2
κ

(
1
2x

) = 1
2 (Cκ(x) + 1) (A.5)

S2
κ

(
1
2x

) = 1 − Cκ(x)
2κ

= 1
2Vκ(x) (A.6)

Tκ
(

1
2x

) = 1 − Cκ(x)
κSκ(x)

= Sκ(x)

Cκ(x) + 1
(A.7)

Cκ(x ± y) = Cκ(x)Cκ(y)∓ κSκ(y)Sκ(x) (A.8)

Sκ(x ± y) = Sκ(x)Cκ(y)± Sκ(y)Cκ(x) (A.9)

Vκ(x ± y) = Vκ(x) + Vκ(y)− κVκ(x)Vκ(y)± Sκ(x)Sκ(y) (A.10)

Tκ(x ± y) = Tκ(x)± Tκ(y)
1 ∓ κTκ(x)Tκ(y) (A.11)

Cκ(x) + Cκ(y) = 2Cκ
(

1
2 (x + y)

)
Cκ

(
1
2 (x − y)) (A.12)

Cκ(x)− Cκ(y) = −2κSκ
(

1
2 (x + y)

)
Sκ

(
1
2 (x − y)) (A.13)

Sκ(x)± Sκ(y) = 2Sκ
(

1
2 (x ± y))Cκ (

1
2 (x ∓ y)). (A.14)

Let x, y, z be three arbitrary real numbers and the quantities defined by

p = 1
2 (x + y + z) p − x = 1

2 (y + z− x)
p − y = 1

2 (x + z− y) p − z = 1
2 (x + y − z). (A.15)

Then we find the following identities involving three arbitrary arguments:

Cκ(x + y) + Cκ(z) = 2Cκ(p)Cκ(p − z) (A.16)

Cκ(x − y) + Cκ(z) = 2Cκ(p − x)Cκ(p − y) (A.17)

Cκ(x + y)− Cκ(z) = −2κSκ(p)Sκ(p − z) (A.18)

Cκ(x − y)− Cκ(z) = 2κSκ(p − x)Sκ(p − y) (A.19)
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Sκ(x + y) + Sκ(z) = 2Sκ(p)Cκ(p − z) (A.20)

Sκ(x − y) + Sκ(z) = 2Sκ(p − y)Cκ(p − x) (A.21)

Sκ(x + y)− Sκ(z) = 2Sκ(p − z)Cκ(p) (A.22)

Sκ(x − y)− Sκ(z) = −2Sκ(p − x)Cκ(p − y) (A.23)

Vκ(x + y)− Vκ(z) = 2Sκ(p)Sκ(p − z) (A.24)

Vκ(x − y)− Vκ(z) = −2Sκ(p − x)Sκ(p − y) (A.25)

Cκ(x)Sκ(y) = Cκ(p)Sκ(p − z) + Sκ(p − x)Cκ(p − y) (A.26)

Sκ(x)Sκ(y) = Sκ(p)Sκ(p − z) + Sκ(p − x)Sκ(p − y) (A.27)

4Cκ
(

1
2x

)
Cκ

(
1
2y

)
Cκ

(
1
2z

) − [1 + Cκ(x) + Cκ(y) + Cκ(z)]

= 8κ2Sκ
(

1
2p

)
Sκ

(
1
2 (p − x)) Sκ (

1
2 (p − y)) Sκ (

1
2 (p − z)) (A.28)

4Cκ
(

1
2x

)
Cκ

(
1
2y

)
Cκ

(
1
2z

)
+ [1 + Cκ(x) + Cκ(y) + Cκ(z)]

= 8Cκ
(

1
2p

)
Cκ

(
1
2 (p − x))Cκ (

1
2 (p − y))Cκ (

1
2 (p − z)) (A.29)

4κ2Sκ(p)Sκ(p − x)Sκ(p − y)Sκ(p − z)
= 16C2

κ

(
1
2x

)
C2
κ

(
1
2y

)
C2
κ

(
1
2z

) − [
1 + Cκ(x) + Cκ(y) + Cκ(z)

]2

= 1 − C2
κ (x)− C2

κ (y)− C2
κ (z) + 2Cκ(x)Cκ(y)Cκ(z) (A.30)

4Cκ(p)Cκ(p − x)Cκ(p − y)Cκ(p − z)
= − 1 + C2

κ (x) + C2
κ (y) + C2

κ (z) + 2Cκ(x)Cκ(y)Cκ(z). (A.31)
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